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I. INTRODUCTION

It is now commonly accepted that most of the mass in galactic halos as well as in the

Universe as a whole is composed of dark matter (DM). There are many indications that

the DM consists of some new, and yet undiscovered, weakly interacting massive particle

(WIMP).

Despite the fact that the nature of the DM is still unknown, it is usually thought that

DM particles cannot be too heavy. If the WIMP is a thermal relic, then it was once in

local thermodynamic equilibrium (LTE) in the early universe, and its present abundance

is determined by its self-annihilation cross section. From unitarity arguments [1], one

expects the mass of a thermal relic to be less than about 500 TeV. The present abundance

of non-thermal relics is not determined by their self-annihilation cross section since they

needn't have been ever in LTE in the early universe. An example of a non-thermal relic

is the axion, and the present axion abundance is determined by the dynamics of the

phase transition associated with symmetry breaking. Non-thermal relics are typically

very light, e.g., the axion mass is expected to be in the range 10�5 to 10�2eV [2].

Because the assumption of relatively low-mass DM seems quite natural, it is rarely

questioned. The goal of this paper is to show that the Universe might be made of

superheavy WIMPs (we will refer to them asX particles), with mass larger than the weak

scale by several (perhaps many) orders of magnitude. Two conditions are necessary for

this to happen: a) the X particles must be cosmologically stable and b) their interaction

rate must be su�ciently weak such that thermal equilibrium with the primordial plasma

was never obtained. This second condition is easy to satisfy as long as the particle is

extremely massive (of the order of the Hubble parameter at the end of in
ation).

We point out that superheavy dark matter may be created during the evolution of

the Universe in a number of ways. If it is produced during the process of reheating after
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in
ation, then the upper bound on its mass MX can be as large as the reheating temper-

ature TRH . The latter should be less than about 109GeV in order to avoid overproducing

dangerous relics such as quasistable gravitinos in supergravity inspired scenarios. The

mass upper bound can be pushed higher than the reheating temperature if one allows

the DM to be produced directly through the decay of the in
aton �eld. In that case,

the mass upper bound is the in
aton �eld mass, which is presumably less than about

1013GeV. On the other hand, if reheating after in
ation is preceded by a preheating

stage [3] it is certainly possible to produce by resonance e�ects copious amounts of dark

matter particles with masses much larger than the in
aton mass [4].

In this paper, we propose yet another mechanism of generating heavy DM. We study

the possibility that DM is produced in the transition between in
ation and a matter-

dominated (or radiation-dominated) universe due to the expansion of the background

spacetime acting on the vacuum quantum 
uctuations.

The distinguishing feature of this mechanism is the capability of generating particles

with mass of the order of the in
aton mass (usually much larger than the reheating

temperature) even when the particles only interact extremely weakly (or not at all) with

other particles and do not couple to the in
aton(s). We �nd that they may still be

produced in su�cient abundance to achieve critical density today due to the classical

gravitational e�ect on the vacuum state at the end of in
ation. More speci�cally, we

will show that in the range 0:04 <�MX=H <� 2, where H � m� � 1013GeV is the Hubble

constant at the end of in
ation (m� being the mass of the in
aton), the DM produced

gravitationally can have a density today of the order of the critical density. This result is

quite robust with respect to the \�ne" details of the transition between the in
ationary

phase and the matter-dominated phase, and independent of the coupling of the DM to

any other particle. The only \non-trivial" requirements are that the WIMPs posses a

mass close to the in
aton mass and that they are stable.

2



Mechanically, the DM particle creation scenario is similar to the in
ationary genera-

tion of gravitational perturbations that seed the formation of large scale structures (see

for example the review given in Ref. [5]). In the usual scenarios of this form, however,

the quantum generation of energy density 
uctuations from in
ation is associated with

the in
aton �eld which dominated the mass density of the universe, and not a generic,

sub-dominant scalar �eld.

Because it is usually assumed that DM forms from the decays or interactions of the

reheating products, it usually has a stage of LTE in its early history. In our scenario the

large mass (or small coupling) of the dark-matter particle will prevent it from thermaliz-

ing, and its abundance will depend only on its mass and the behavior of the spacetime,

independently of its weak coupling to other nongravitational �elds.

This paper is organized as follows. In the next section, we elaborate on the dark

matter scenario and the calculational method. In Section III, we discuss the numerical

results. We then summarize our work in Section IV. In the appendix, we derive the

asymptotic mass dependence of the dark matter density presented in Section II.

II. SCENARIO AND CALCULATIONAL METHOD

In this section we discuss the dark matter abundance calculation in our scenario.

First, we give an expression for the dark matter density today in terms of the number

density when it was produced. We then consider the mass range of the dark matter

necessary if it is never to thermalize. Finally, we discuss the mechanics of the gravita-

tional production of particles. In particular, we discuss the number density de�nition

and present the asymptotic dependence of the number density on the particle mass.

Suppose the dark matter never attains LTE and is nonrelativistic at the time of
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production. The usual quantity 
Xh
2 associated with the dark matter density today

can be related to the dark matter density when it was produced as follows: As a �rst

step, we can write

�X(t0)

�R(t0)
=
�X(tRH)

�R(tRH)

�
TRH
T0

�
; (1)

where �R denotes the energy density stored in radiation, �X denotes the energy density

residing in the dark matter, TRH is the reheating temperature, T0 is the temperature

today, t0 denotes the time today, and tRH denotes the approximate time of reheating

completion.5 To obtain �X(tRH)=�R(tRH), we must determine when X particles are

produced with respect to the completion of reheating (when radiation domination begins)

and the e�ective equation of state operative between X production and the completion

of reheating.

At the end of in
ation the universe may have a brief period of matter domination

resulting either from the coherent oscillations phase of the in
aton condensate or from

the preheating phase [3]. If the X particles are produced at time t = te when the de

Sitter phase ends and the coherent oscillation period just begins, then both theX particle

energy density and the in
aton energy density will redshift at approximately the same

rate until reheating is completed and radiation domination begins. Hence, the ratio of

energy densities preserved in this way until the time of radiation domination is

�X(tRH)

�R(tRH)
� 8�

3

�X(te)

MPl
2H2(te)

; (2)

where MPl ' 1019 GeV is the Planck mass and most of the energy density in the universe

just before time tRH is presumed to turn into radiation. Thus, using Eq. (1), we may get

an expression for the quantity 
X � �X(t0)=�C(t0), where �C(t0) = 3H2
0MPl

2=8� and

5More speci�cally, this is approximately the time at which the Universe becomes radiation dominated.
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H0 = 100 h km sec�1 Mpc�1:


Xh
2 � 
Rh

2
�
TRH
T0

�
8�

3

�
MX

MPl

�
nX(te)

MPlH2(te)
: (3)

Here 
Rh
2 � 4:31 � 10�5 is the fraction of critical energy density that is in radiation

today and nX is the density of X particles at the time when they were produced.

Note that because the reheating temperature must be much greater than the temper-

ature today (TRH=T0 >� 4:2�1014), in order to satisfy the cosmological bound 
Xh
2 <� 1,

the fraction of total energy density in the dark matter at the time when they were pro-

duced must be extremely small. To illustrate this, takeH2(te) � m2
� and �(te) � m2

�MPl
2.

Then 
Xh
2 � 1017(TRH=10

9GeV)(�X(te)=�(te)). It is indeed a very small fraction of the

total energy density we wish to extract in the form of massive X particles.

This means that if the dark matter particle is extremely massive, the challenge lies in

creating very few of them. We will see that the gravitational production naturally gives

the needed suppression. Note that if reheating occurs abruptly at the end of in
ation,

then the matter domination phase may be negligibly short and the radiation domination

phase may follow immediately after the end of in
ation. However, this does not change

Eq. (3).

For the superheavy X particles to be good candidates for DM, they have to be

stable or at least have a lifetime greater than the age of the universe. This may occur

in supersymmetric theories where the breaking of supersymmetry is communicated to

the ordinary sparticles via the usual gauge forces [6]. In gauge-mediated supersymmetric

models there are two sectors with possible stable particles which might act as superheavy

dark matter candidates:

1) The secluded sector, which is strongly interacting: Supersymmetry is broken dy-

namically and some F -term gets a nonvanishing expectation value, where the scale of

supersymmetry breaking, as usual, is denoted by
p
F .
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2) The messenger sector: This sector contains the �elds charged under the SU(3)C 

SU(2)L 
 U(1)Y gauge interactions, and communicate supersymmetry breaking to the

sparticles in the observable sector. The mass of the messenger �elds is usually denoted

by M .

After the messengers have been integrated out, sfermions receive a mass squared

fm2 � �2�2, where � is the appropriate gauge coupling and � ' F=M . Notice, in

particular, that the spectrum of the superparticles depends on the ratio � = F=M which

is �xed to be relatively small and in the range 10 to 103 TeV. However, this does not

necessarily mean that
p
F and M are of the same order of magnitude as � [8] since it

is only their ratio which is �xed around 103 TeV: the hierarchy
p
F ;M � � is certainly

allowed [7].

The secluded sector often has accidental symmetries analogous to the baryon number.

This means that the lightest particle in the secluded sector might be stable and a good

candidate for dark matter with a mass of the order of
p
F , much larger than the weak

scale. The lightest messenger �eld might also be a good candidate for superheavy DM.

Indeed, if the supersymmetry breaking sector contains only singlets under the SU(3)C 

SU(2)L 
 U(1)Y gauge interactions and if there are no direct couplings between the

ordinary and messenger sectors, then the theory is characterized by a conserved global

quantum number carried only by the messenger �elds. The typical mass M of the DM

component in the messenger sector may be much larger than the weak scale.

Another framework in which we might expect the presence of superheavy stable

particles is a Kaluza-Klein theory (a uni�ed theory which requires space-time dimensions

higher than four). A popular example is provided by M-theory [9] where the number

of dimensions is D = 11. These theories are characterized by the presence of a tower

of Kaluza-Klein modes which are left after the compacti�cation of the extra D � 4

dimensions. For instance, if D = 5, the existence of a compact �fth dimension implies
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an in�nite tower of four-dimensional particles corresponding to quantized excitations of

the extra dimension. These massive particles have been called \pyrgons" [10]. If any

of the pyrgon states are stable or have a lifetime greater than the age of the universe,

they might act as DM with a mass of the order of the inverse of the physical size of the

compact dimensions R�1
D , which is likely to be larger than the weak scale by many orders

of magnitude.

For the gravitational production scenario to be distinguishable from other scenarios,

X must never thermalize. The condition for the dark matter particles to be out of

equilibrium and their comoving number density to be constant is

nXh�Ajvji <� H; (4)

where H is the Hubble parameter, h�Ajvji is the thermal averaged self-annihilation cross

section times the M�ller speed for the dark matter particles X. Since the cross section

�A is expected to be at most aboutM�2
X (usually smaller; sometimes much smaller6) and

nX is bounded by the condition that 
Xh
2 < 1, we obtain from Eq. (3)

nXh�Ajvji
H

� 7� 10�19

(TRH=109GeV)

(H=MPl)

(MX=MPl)3
(5)

as the quantity which must be less than one at t = te to avoid thermalization. For a low

reheating temperature of 102 GeV and a typical value of H = 10�6MPl for in
ationary

scenarios, we �nd a conservative condition MX=H >� 1 for the particles never to reach

chemical thermal equilibrium. Note that this is a rather conservative estimate since the

reheating temperature is likely to be larger and the cross section is likely to be smaller.

We also remark that because the reheating temperature is likely to be much smaller than

6For example, if there is a heavy gauge particle mediating the process, then the e�ective coupling

will be further suppressed and the relevant mass scale for the cross section will be the mediating particle

mass instead of the X mass.

7



the X mass, the thermal production of the X particles is negligible.7

Now let us describe the basic physics underlying our mechanism of gravitational

production of DM.

In this paper we take space-time both in and out of in
ationary era to be spatially


at, homogeneous, and isotropic, with the line element of the form

ds2 = a2(�)(d�2 � dx2): (6)

For simplicity (and without much loss of generality), we restrict ourselves to a massive

scalar �eld coupled to classical gravity and nothing else. The other couplings are assumed

to play an insigni�cant role in the gravitational production.

There are various inequivalent ways of calculating the particle production due to

interaction of a classical gravitational �eld with the vacuum (see for example [11], [13],

and [15]). In our work, we use the method of �nding the Bogoliubov coe�cient for the

transformation between positive frequency modes de�ned at two di�erent times. We will

show below that the large mass dependence of the DM number density is determined

by either the di�erentiability (or the smoothness) of the scale factor or the choice of

the vacuum. On the other hand, for MX=H <� 1 where H is the value at the end of

in
ation, the results are quite insensitive to the di�erentiability or the �ne details of the

scale factor's time dependence. For 0:04 <� MX=H <� 2, we �nd that all the dark matter

needed for closure of the universe can be made gravitationally, quite independently of

the details of the transition between the in
ationary phase and the matter dominated

phase.

To see the e�ects of vacuum choice and the scale factor di�erentiability on the large

X mass behavior of the X density produced, we start by canonically quantizing an action

7Since for times larger than te, the interaction rate continues to be smaller than H , the particles will

not thermalize later either.
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of the form (in the coordinate ds2 = dt2 � a2(t)dx2)

S =
Z
dt
Z
d3x

a3

2

 
_X2 � (rX)2

a2
�M2

XX
2 � �RX2

!
(7)

where R is the Ricci scalar. After transforming to conformal time coordinate, we use the

mode expansion

X(x) =
Z d3k

(2�)3=2a(�)

h
akhk(�)e

ik�x + aykh
�
k(�)e

�ik�x
i
; (8)

where because the creation and annihilation operators obey the commutator [ak1 ; a
y
k2
] =

�(3)(k1 � k2), the hks obey a normalization condition hkh
0�
k � h0kh

�
k = i to satisfy the

canonical �eld commutators (henceforth, all primes on functions of � refer to derivatives

with respect to �). The resulting mode equation is

h00k(�) + w2
k(�)hk(�) = 0; (9)

where

w2
k = k2 +M2

Xa
2 + (6� � 1)a00=a : (10)

The parameter � is 1/6 for conformal coupling and 0 for minimal coupling. From now

on, we will set � = 1=6 for simplicity but without much loss of generality. By a change

in variable � ! k=a, one can rewrite the di�erential equation such that it depends only

on H(�), H 0(�)=k, k=a(�), and MX .
8 Hence, we introduce the parameter Hi and ai

corresponding to the Hubble parameter and the scale factor evaluated at an arbitrary

conformal time �i, which we take to be the approximate time at which X are produced

(i.e., �i = �(te)). We then rewrite Eq. (9) as

h00~k(~�) + (~k2 + b2~a2)h~k(~�) = 0 [b �MX=Hi] (11)

8This di�erential equation is h00

k
(y) + (1=H)H 0(y)h0

k
(y) + (1+M2

X
=y2)=H2(y)hk = 0, where y = k=a.
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where ~� = �aiHi, ~a = a=ai, and ~k = k=(aiHi). For simplicity of notation, we shall drop

all the tildes from now on. This di�erential equation can be solved once the boundary

conditions are supplied. Since the annihilation operator is just a coe�cient of an ex-

pansion in a particular basis, �xing the boundary conditions is equivalent to �xing the

vacuum.

To obtain the number density of the particles produced, we will perform a Bogoliubov

transformation from the vacuum mode solution with the boundary condition at � = �0

(the initial time at which the vacuum of the universe is determined) into the one with the

boundary condition at � = �1 (any later time at which the particles are no longer being

created). In the examples given in the next section, �0 will be taken to be �1 while �1

will be taken to be at +1 in order to de�ne vacua of in�nite adiabatic order (explained

below) which results in a smaller particle production than for any �nite adiabatic order

vacua.9 The exact values of �0 and �1 are not important for those examples as long as they

are in a region in which a0=a2 � 1 or ba=k � 1. De�ning the Bogoliubov transformation

as h�1k (�) = �kh
�0
k (�)+ �kh

��0
k (�) (the superscripts denote where the boundary condition

is set), we have the following energy density in the particles produced:

�X(�1) =MXnX(�1) =MXH
3
i

 
ai

a(�1)

!3 Z 1

0

dk

2�2
k2j�kj2; (12)

where one should note that the number operator is de�ned at �1 while the quantum

state (approximated to be the vacuum state) de�ned at �0 does not change in time in

the Heisenberg representation.

As usual, there is an ambiguity in the de�nition of the vacuum, which is equivalent

to an ambiguity in the boundary conditions of Eq. (9). One method of systematically

classifying the various inequivalent vacuum states is through the adiabatic vacuum [14]

9In the numerical calculation, one can only approximate these in�nities with large numbers, but the

limit is not singular.
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de�nition. The adiabatic vacuum de�nition allows one to construct and classify a set

of mode equation solutions which reduce to the usual plane waves when a0(�) = 0 for

all �. The classi�cation is based on a type of WKB asymptotic expansion in powers of

conformal time derivatives of wk. In particular, the classi�cation allows one to quantify

how two solutions with di�erent boundary conditions (hence two vacua) will di�er in

terms of derivatives of wk. Each derivative with respect to the conformal time is assigned

a bookkeeping small parameter, and this small parameter's power in an expansion is

referred to as the adiabatic order. We de�ne Ath adiabatic (order) vacuum at time ��

by using the boundary condition

hk(�
�) = h

(A)
k (��); h0k(�

�) = h
0(A)
k (��); (13)

where h
(A)
k (�) is a systematically chosen approximate solution to the mode equation that

satis�es the mode equation up to Ath adiabatic order in the asymptotic limit that the

adiabatic parameter goes to zero. Roughly speaking, the larger the adiabatic order of

the vacuum, the closer it is to the Minkowski vacuum in the sense that it is less (in the

adiabatic limit) dependent on the time at which it is de�ned. We refer the reader to the

appendix (or Ref. [13]) for a more precise de�nition.

As shown in the appendix, the asymptotic behavior of the number density as b!1
can be obtained by the following rule: If the vacuum at �0 corresponds to an nth adiabatic

vacuum, and the vacuum at �1 corresponds to a pth adiabatic vacuum, then as b !1
the number density will behave like10

nX � b�(r+1) (14)

where r = Min(p; n) provided that (d�a=d��)=a�+1 < 1 for all � in the domain and

10This behavior is also noted on pg. 69 of [13] although there it is arrived at di�erently than in our

Appendix.
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all natural numbers �.11 It is important to note that for a �xed time, the asymptotic

expansion generated by Eq. (A2) (in the Appendix) generally only converges up to a

�nite order. Hence, except under special circumstances an adiabatic vacuum of only a

�nite order can be generated. This means that in general, the number density will fall o�

with a �nite power of 1=b for large b. Only when an adiabatic vacuum of in�nite adiabatic

order can be generated, which usually means that the domain of a(�) can be extended to

�1 with the property given above, does the number of particles produced fall o� faster

than any �nite power of 1=b (e.g. exponential suppression). In practice, we �nd that a

spacetime which admits an in�nite adiabatic order vacuum has the \advantage" of all the

vacua de�ned in a su�ciently adiabatic region being numerically equivalent regardless

of the vacua's adiabatic order and the exact time at which the vacua are de�ned.

If within the domain there is one discontinuity of the �rst kind12 in (dqa=d�q)=aq+1

for q = s where s < r = Min(p; n) and there are no discontinuities for q < s, and if s � 2

then

nX �
(
b�s if s odd;
b�(s�1) if s even;

(15)

else if s = 1 then nX � b. This is true provided that (d�a=d��)=a�+1 < 1 for all � in

each of the continuous domain and all natural numbers �. Note that fractional power

dependence on 1=b will be possible if the discontinuity is not of the �rst kind (e.g.,

a(�) = �2 at � = 0).

III. NUMERICAL RESULTS

11Note that by de�nition given in the appendix, p and n can be only even integers or 0.
12The discontinuity of the �rst kind refers to the situation where the left and the right hand limits

exist but are unequal.
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We shall employ the method elaborated in the previous section to calculate the grav-

itational production of particles in a couple of toy models of in
ation which re
ect some

extreme ranges of di�erentiability. We will consider the case when the scale factor has a

discontinuity of the �rst kind in one of its derivatives and when it is a C1 function. We

will see that enough dark matter may be produced through this mechanism as to give

critical density of dark matter today.

Our example of a discontinuous model has the scale factor behaving like the de Sitter

space for � < �i and like the matter or radiation dominated universe for � > �i:

a(�) =

(
ai=(2� �=�i) if � � �i;
ai(�=�i)

p if � > �i;
(16)

where p = 2 for the matter dominated case and p = 1 for the radiation dominated case. If

we de�ne our vacuum states at �0 = �1 and �1 =1, then in this space time, adiabatic

vacua of any order will be equivalent to in�nite-order adiabatic vacua. For the transition

into matter domination, the smallest derivative order in which there is a discontinuity

(of the �rst kind) comes from a0(�) at � = �i while for the transition into the radiation

domination, the analogous contribution comes from a00(�) which has a discontinuity of

the �rst kind at � = �i.
13 Hence, our analysis would predict that for large b, nX will

increase like b in the case of matter domination whereas it will fall o� like 1=b in the case

of radiation domination.

Our second toy model looks at the other extreme limit of having a C1 function for

a(�) which behaves in the asymptotic limits of �=�i ! �1 identically as the discontin-

uous model:

a(�) = ai

(
1� exp[�(�=�i)2]

(�=�i)2

 
1� tanh(�=�i=2 + 1)

2

!
+

(�=�i)
2p

(1 + 3 exp(��=�i))2

+ tanh(�=�i � �)� tanh(�=�i � 2�)
�1=2

(17)

13These discontinuities are unphysical and correspond at best to crude approximations. We consider

them to test the sensitivity of our results on the choice of the model.
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Figure 1: The scale factor (normalized to its value at � = �i) is plotted as a function
of the scaled conformal time �=�i. The curves labeled \smooth" and \discontinuous"
correspond to the toy models for the evolution of the scale factor without and with
discontinuous derivatives, respectively. As �=�i ! �1, the scale factor behaves as
1=(�=�i)

2 corresponding to a de Sitter space, and as �=�i ! +1, the scale factor behaves
as (�=�i)

2 corresponding to a matter dominated Universe. The solid curve shows an
analogous numerical solution of the scale factor for a (1=2)m2

��
2 in
aton potential.

where � = 1:07 is needed for proper normalization. The functional form was chosen

rather arbitrarily except for the requirements of monotonicity, (d�a=d��)=a�+1 < 1 for

all � and natural numbers �, and appropriate power law asymptotic behavior. As before,

this spacetime admits a vacuum of in�nite adiabatic order at � = �1. In Fig. 1 we show

how these models compare with the numerical result obtained by solving the (1=2)m2
��

2

in
ationary model's equations of motion. Note that they di�er mainly in the transition

region (or the \nonadiabatic" region near �=�i = 1) where most of the particle production

\occurs."

In Fig. 2, we show the number density obtained numerically in these toy models. As

14



Figure 2: The dark matter abundance today is shown as a function of the particle mass
for various models. The mass is given in terms of Hi � 10�6MPl (the Hubble parameter
at � = �i, the beginning of the coherent oscillation period). In the \discontinuously into
radiation" case, a00(�) has a discontinuity at � = �i, while in the \discontinuously into
matter" case, a0(�) has a discontinuity at � = �i. The curves labeled \smoothly into" is
for a(�) that satis�es (d�a=d��)=a�+1 <1 for all � and natural numbers �.

we expect, the large b behavior is exactly determined by the choice of the vacuum and the

di�erentiability of the potential. Speci�cally, just as our asymptotic analysis showed, for

large b, nX varies as b and 1=b for the matter and radiation domination case respectively

in the discontinuous model, while nX is exponentially suppressed in the C1 model.

Note that independently of the di�erentiability of the scale factor, if MX � Hi � m� for

TRH � 109 GeV, X will have critical energy density today. On the other hand, unless

there is some discontinuity in the scale factor for some nth derivative where n is not too

large, this gravitational production mechanism will not generate enough dark matter in

the Universe to reach critical density for much larger masses (MX � m�) even if such
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stable heavy particles exist. In that case, however, if these heavy particles couple to the

in
aton and if preheating occurs, enough of them may be produced through the broad

resonance mechanism to have critical density of superheavy dark matter today.

IV. SUMMARY

To conclude, we have investigated the scenario of creating nonthermalizing dark mat-

ter gravitationally at the end of in
ation (or the beginning of the coherent oscillation

phase). There is a signi�cant mass range ( 0:1m� to m�, where m� � 1013GeV) for

which the X particles will have critical density today regardless of the �ne details of the

in
ation-matter/radiation transition. Because this production mechanism is inherent in

the dynamics between the classical gravitational �eld and a quantum �eld, it needs no

�ne tuning of �eld couplings or any coupling to the in
aton �eld. However, only if the

particles are stable (or su�ciently long lived) will these particles give contribution of the

order of critical density. For even larger dark matter masses, the broad resonance mech-

anism of preheating (if it occurs) will produce these particles in su�cient abundance as

to achieve 
0 = 1.
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APPENDIX

In this appendix, we derive Eq. (14) and Eq. (15), the asymptotic dependence of the

dark matter density on the mass parameter b = MX=Hi as b ! 1. This asymptotic
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behavior is, in general, dependent upon the choice of the vacuum state and the di�eren-

tiability of the scale factor in an FRW type spacetime. We employ the adiabatic vacua

ansatz[14] to classify the various possible (restricted) choices of vacua. Strictly speaking,

our conditions for the various asymptotic behaviors are only su�cient conditions, but

they have wide applicability as we demonstrate in this paper.

Let's �rst review the concept of an adiabatic vacuum (see for example pg. 66 of

Ref. [13]). We �rst de�ne the concept of an adiabatic order as the power of 1=T that

results for any term in a 1=T expansion after one makes the transformation � ! � and

d=d� ! 1=Td=d�. Note that if 1=T ! 0, then this is equivalent to an expansion in

\smallness" of conformal time derivatives. The basic idea is that if the derivatives of the

mode frequency wk are indeed small, then the degree to which the �eld theory breaks

time translational symmetry can be characterized by the adiabatic order. This breaking

of the time translational symmetry14 is what is responsible for particle creation in our

isotropic expanding Universe.

To de�ne the adiabatic vacuum, we �rst make a change in variables from hk to Wk

by writing

hk =
1p
2Wk

exp
�
�i
Z �

Wk(�
0)d�0

�
(A1)

and obtain a new di�erential equation

W 2
k = w2

k � 1=2
h
W 00

k =Wk � (3=2)(W 0
k=Wk)

2
i
; (A2)

where we have used Eq. (11) and de�ned w2
k to be the coe�cient of h~k in Eq. (11).15

14Conformal time translation generates conformal transformation in an FRW universe, and the mass

term breaks the conformal symmetry.
15We have dropped all the tildes for simplicity in notation. Note also that a constant factor normal-

ization choice of Eq. (A1) is unimportant for the Bogoliubov transformation.
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Hence, let us de�ne a map

A[W (n)
k ] =

vuuuutw2
k �

1

2

264W 00(n)
k

W
(n)
k

� 3

2

0@W 0(n)
k

W
(n)
k

1A2
375 (A3)

which is a map that raises the adiabatic order by two and also de�ne

W
(n+2)
k = A[W

(n)
k ]; (A4)

where the superscript denotes the adiabatic order and W
(0)
k = wk. We can now write an

approximate mode equation solution good to Ath adiabatic order as

h
(A)
k =

1q
2W

(A)
k

exp
�
�i
Z �

W
(A)
k (�0)d�0

�
: (A5)

Finally, we de�ne the adiabatic vacuum of Ath order at some value of � which we call

�� by using the boundary condition16

hk(�
�) = h

(A)
k (��); h0k(�

�) = h
0(A)
k (��); (A6)

where hk on the left hand side solves the mode equation Eq. (11) exactly. Since for a

generic �nite �� and �xed b, the recursion generated by Eq. (A4) eventually increases

without bound in general, the recursion relation generates at best an asymptotic ex-

pansion in the limit that the adiabatic order terms go to zero. In particular, an in�nite

adiabatic order vacuum usually cannot be generated at a \nonsingular" ��.

Now, we examine how di�erent boundary conditions (di�erent adiabatic order vacua)

give rise to di�erent asymptotic behavior as b!1. First let us restrict our attention to

the case where a(�) is C1 in the domain of interest. Since b2 is the coe�cient of a2 term

inside w2
k, we see that a su�cient condition for the adiabatic order terms to go to zero

for large b is (d�a=d��)=a�+1 <1 for all � in the domain and any �nite natural number

16In the spirit of the adiabatic expansion, the equality needs to only be enforced to Ath adiabatic

order. However, we will for simplicity of argument assume throughout that it is enforced exactly. This

only a�ects the conclusion for the 0th adiabatic order case.
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�. Hence, we will assume this to be true and use the adiabatic expansion to determine

the asymptotic power dependence of nX as 1=b! 0.

The key is that the recursion Eq. (A4) can be used as a generator of an asymptotic

expansion of the exact solution in the limit that the adiabatic order terms tend to zero.

One can easily show that this map has the property if A[W
(n)
k ]=W

(n)
k � 1 + O(1=b�) +

O(1=b�+�) with � � 1, then A[A[W
(n)
k ]]=A[W

(n)
k ] � 1 +O(1=b�+2) +O(1=b�+2+�) where

� represents the asymptotic limit that b!1. Since W
(2)
k = wk +O(1=b), we arrive at

an useful property

W
(n)
k = W

(n�2)
k +O(1=bn=2); (A7)

which shows how each successive approximation generates corrections of only increasingly

higher order in 1=b. Thus,

Wk(�) � wk(�) +
A=2�1X
n=0

(W (2n+2)
k �W (2n)

k ) +O(1=bA=2+1) (A8)

is an asymptotic expansion of the solution to Eq. (A2) with the boundary condition

Wk(�
�) = W

(A)
k (��) + h(��); W 0

k(�
�) = W

0(A)
k (��) + h0(��) (A9)

where h(�) � O(1=bA=2+1). Let us call this solution fk. Note that fk satis�es a boundary

condition that di�ers from one implied by Eq. (A6) by O(1=bA=2+1).

One can now perturb about fk by writing W ��

k (�) = fk(�) + uk(�) where the su-

perscript on W ��

k corresponds to the time at which the boundary condition Eq. (A6) is

imposed and by using this in Eq. (A2) to obtain a di�erential equation linear in uk. One

then �nds that the sourced solution contributes only O(1=bA=2+2) to uk(�). Hence, if the

initial data on uk(�) is of the order of O(1=bA=2+1), then the solutions to the homoge-

neous equation dominate the asymptotic behavior of uk(�) as b!1, and the behavior
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is O(1=bA=2+1). In particular, if we have the boundary condition Eq. (A6) instead of Eq.

(A9), then we �nd uk(�
�) � O(1=bA=2+1) and

W ��

k (�) � W
(A)
k (�) +O(1=bA=2+1) (A10)

where the O(1=bA=2+1) vanishes at � = ��. This is of course what we would naively

expect.

We can now see how nX will depend asymptotically on b. Suppose the vacuum in the

past is de�ned at � = �0 with nth adiabatic order boundary condition and the vacuum

today is de�ned at � = �1 with pth adiabatic order boundary condition. Carrying out

the Bogoliubov transformation with the solution written in the form Eq. (A1), we �nd

j�k(�1; �0)j2 = 1

4W �0
k W �1

k

8><>:1

4

0@W 0�0
k

W �0
k

� W
0�1
k

W �1
k

1A2

+ (W �0
k �W �1

k )2

9>=>; ; (A11)

where the right hand side can be evaluated at any �. In light of Eq. (A10), if we substitute

W �0
k = W

(n)
k +O(1=bn=2+1) andW �1

k = W
(p)
k +O(1=bp=2+1), thenW �0

k �W �1
k = O(1=br=2+1)

where r = Min(n; p) and W
0�0
k =W �0

k �W
0�1
k =W �1

k = O(1=br=2+2). Now, since

nX /
Z 1

0
j�kj2k2dk; (A12)

after making a change of variable from k to y through k = yb, we obtain the result in

Eq. (14).

If within the domain of interest there is one discontinuity of the �rst kind (left and

right hand limits exist but are unequal) in (dqa=d�q)=aq+1 for q = s where s < r =

Min(p; n), and there are no discontinuities for q < s, then Eq. (A11) will receive leading

contributions at the discontinuity. Hence, with similar considerations as with the smooth

case above, we have the result of Eq. (15). Note that the asymptotic expansion is valid

in each \continuous" region because the discontinuity is of the �rst kind.
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